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Abstract

The influence of the anisotropic hyperfine interaction on the 14N electron-nuclear double resonance/electron spin echo envelope
modulation spectra is studied by approximate analytical and graphical methods for the case of the isotropic g-factor. The suggested
determination of the modified characteristic directions of the magnetic field due to anisotropy enhances the insight in the structural
details of the system and analytical solutions of the secular equation for these conditions are derived. The graphical method, pre-
viously used for the analysis of the orientation dependence of the 14N nuclear-transition frequencies in orientation-disordered sam-
ples for isotropic hyperfine interaction is extended to the case of arbitrary anisotropic hyperfine tensor. The above analytical and
graphical methods are illustrated and tested against exact simulations in two practically important cases: (i) isotropic hyperfine inter-
action (hfi) exceeding other nuclear interactions in nuclear spin Hamiltonian. (ii) Cancellation of the isotropic part of the hfi.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

High-resolution EPR techniques, such as electron-
nuclear double resonance (ENDOR) and one- and
two-dimensional electron spin echo envelope modula-
tion (ESEEM), are very sensitive and informative for
structural studies of the paramagnetic species and their
environment in amorphous solids. They find wide appli-
cability in structural biochemistry [1–5] due to their ability
to characterize metal ligands or the interaction of radical
species with their environment in proteins prepared in
frozen solutions of limited concentration, and do not
require growth of single crystals. An important motif in
protein studies is the nitrogen 14N ligation of the metal
centers or its participation in the formation of hydrogen
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bonds with paramagnetic species. Magnetic resonance
techniques provide information about the chemical type
of nitrogen and its structural characteristics based on
the hyperfine and quadrupole couplings determined from
powder or orientation-selected spectra [1–5].

The solution of the time-independent Schrödinger
equation for an electronic triplet with large zero field
splitting (ZFS) or a 14N nuclear spin I = 1 with large nu-
clear quadrupole interaction (nqi) are mathematically
equivalent and reduce to the solution of a secular equa-
tion of third degree with respect to the eigenfrequencies.
The corresponding mathematical problem of diagonaliz-
ing a 3 · 3 complex Hermitian matrix is analytically
solvable and was applied by Muha [6,7] for the compu-
tation of the eigenvalues and the eigenvectors of the nu-
clear spin Hamiltonian of 14N with arbitrary nqi tensor
in the presence of a static magnetic field, applied to nu-
clear quadrupole resonance (nqr). This approach can be
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extended on the more general case including arbitrary
g-, hyperfine-A and nuclear quadrupole tensors Q.

However, the complete interpretation of the spectral
features present in 14N powder spectra and exact deter-
mination of the hyperfine and quadrupole tensors re-
quires usually time consuming numerical simulations.
The complexity of analysis would increase proportion-
ally if the tensors of several nuclei need to be determined
from experimental nuclear frequencies. In that situation,
the development of approximate approaches providing
an immediate estimate of part of the required parame-
ters directly from the spectra are highly desirable.

Dikanov et al. [8,9] have proposed a graphical method

to explore the dependence of the 14N nuclear frequencies
on the isotropic hyperfine constant and the nqi parame-
ters. The same method was previously used by Kottis
and Lefebvre [10] in simulations of CW-EPR powder
spectra of triplets with substantial ZFS. This method
has the advantage to give important semi-quantitative
information about the orientational properties of the
transition frequencies without actually requiring the solu-
tion of the secular equation. Flanagan and Singel [11] ex-
tended this approach and analyzed in detail the spectral
features of one-dimensional 14N ESEEM spectra for iso-
tropic hyperfine interaction (hfi) combining the graphical
approach with simulations of the spectra. Some addi-
tional characteristics of the powder 14N spectra for the
isotropic hfi were established by Lee et al. [12], while
Maryasov and Bowman [13] have recently reported the
theoretical consideration of the 14N HYSCORE spectra
for the same case.

Although the results of these works facilitate the
understanding of the 14N spectra and the estimation of
the hyperfine and quadrupole couplings, the influence
of the anisotropic hfi on the characteristic features of
powder spectra requires better qualitative and quantita-
tive understanding. In spite that the solution of the sec-
ular equation is analytically available its mathematical
complexity does not permit any insight to the resulting
spectral features because the use of the even more com-
plicated eigenfunctions is required. The situation be-
comes hopeless when polyoriented samples are
considered. Therefore, in the present work we used accu-
rate analytical simulations of ENDOR and ESEEM
spectra to compare to new approximate analytical and
graphical treatments studying the influence of the anisot-
ropy directly on the nuclear sublevel transitions. The aim
was to adapt the graphical method to the anisotropic

case, both for the hfi and/or for the electron Zeeman
interaction, for practical use in single crystals and pow-
ders. This was achieved by taking simpler theoretical de-
tours available by the graphical method. Thus, the
modified characteristic directions for non-coinciding Q
and A tensors were first determined. From these results,
analytical expressions of the dq transitions and the sta-

tionary points of the transition frequencies were derived.
Finally, explicit relations of the total span of the EN-
DOR and the stimulated ESEEM spectra and the posi-
tions and the inhomogeneous broadening of the
characteristic features of the powder spectra in certain
powders were also obtained analytically.
2. Sublevel spin Hamiltonian

Assuming high field conditions, the magnetic energy
of a nucleus I, coupled to an electron spin S in the
M (”MS) sublevel, is given by the effective nuclear sub-

level Hamiltonian, [14].

HI;M ¼ Hhfi
I ;M þ HnZee

I;M þ Hnqi
I ¼ hIþ � mI;M þ Iþ �Q � I: ð1Þ

Expressing the nuclear spin operator I in Cartesian
coordinates U = (X,Y,Z), which coincide with the prin-
cipal directions of the nqi tensor, the Eq. (1) becomes:

HI;M ¼ h½IX mðX Þ
I;M þ IY m

ðY Þ
I ;M þ IZm

ðZÞ
I ;M � � K½ð1� gÞI2X

þ ð1þ gÞI2Y � 2I2Z �: ð2Þ
This expression contains the Cartesian components mðUÞ

I;M

of the vector mI;M, which will further be called effective
nuclear sublevel frequency (ENSF) vector. The term
ENSF refers to the degenerate single quantum (sq)
ENDOR transition-frequencies between the nuclear
states of each manifold in the absence of quadrupole
[14]. Also the quadrupole strength K = Qzz/2, and the
asymmetry parameter, g = (Qxx � Qyy)/Qzz appear in
the above relations.

The sublevel Hamiltonian has the following matrix
representation:

Xj i Yj i Zj i
Xh j K 1� gð Þ �imðZÞI ;M �imðY ÞI;M

Yh j imðZÞI ;M K 1þ gð Þ �imðX ÞI;M

Zh j imðY ÞI ;M imðX Þ
I ;M �2K

! HtotðMÞ

¼ K

1� g �i~mðZÞI;M �i~mðY ÞI ;M

i~mðZÞI ;M 1þ g �i~mðX Þ
I ;M

i~mðY ÞI ;M i~mðX Þ
I;M �2

0
BB@

1
CCA ð3Þ

in the standard basis

jX i ¼ 1ffiffiffi
2

p ½j � 1i � j1i�;
�

jY i ¼ iffiffiffi
2

p ½j � 1i þ j1i� and jZi ¼ j0i:
�

ð3aÞ

The diagonal matrix elements are the pure quadrupole
eigenfrequencies kX = (1 � g)K, kY = (1 + g)K, and
kZ = �2K corresponding to |Xæ, |Yæ, and |Zæ, respec-
tively. The off-diagonals contain reduced ENSF vector
components as they are divided by K

~mðUÞ
I ;M ¼

mðUÞ
I;M

K
for U ¼ X ; Y ; Z: ð4Þ
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Thus, the problem of finding the sublevel frequencies in
the case of the 14N with spin I = 1 coupled to an electron
spin doublet, finally leads to solving the following secu-
lar equation of third degree for the eigenfrequencies k.

k3 � ½~m2I;M þ g2 þ 3�kþ ~m2I ;M � 3ð~mðZÞI ;MÞ
2

þ g ð~mðY ÞI ;MÞ
2 � ð~mðX Þ

I ;MÞ
2

h i
þ 2ð1� g2Þ ¼ 0: ð5Þ

One can introduce the coefficient pM of the linear term,
and the ‘‘constant’’ coefficient qM of the secular equa-
tion (the quadratic term is missing in this equation).

pM � pMð#;u;Xg;XAÞ ¼ ~m2I ;M þ g2 þ 3; ð6Þ

qM ¼� ~m2I ;M �3ð~mðZÞI ;MÞ
2þg ð~mðY ÞI ;MÞ

2�ð~mðX Þ
I ;MÞ

2
h i

þ2 1�g2
� �n o

:

ð7Þ
Then, the secular equation obtains the implicit form
appropriate to be solved by the analytical method of
Muha [6,7].

k3 � pMk� qM ¼ 0: ð8Þ
The eigenvalues and the eigenvector of the sublevel
nuclear-spin Hamiltonians are well studied and used
previously for the calculation of the frequencies and
intensities of the ENDOR/ESEEM transitions and sim-
ulation of the spectra [5,6,12].
3. Properties of the effective nuclear sublevel frequency

vectors

The quantities of the spin system that critically influ-
ence the solution of Muha equation are the ENSF vec-
tors and their components. The general definition for
the ENSF vector mI;M is [14,15]

mI;M ¼ M
g0

A � gþ þ m0IE

� �
� b � GM � b: ð9Þ

The matrix GM is the effective nuclear sublevel (ENS)
g-tensor as it plays an analogous role to the NMR chem-

ical shift anisotropy tensor. Here, the nuclear spin can be
affected strongly by the hfi, and in addition it gives differ-
entGM tensors in the two electronic sublevelsM = ±1/2.

The direction of mI;M signifies the quantization axis of
the nuclear spin in the sublevel manifold M. The unit
vector b (#,u) = (sin# cosu, sin# sinu, cos#)+ stands
for the direction of the magnetic field B0 = B0 b, as it
can be expressed by the spherical polar angles, # and u.

The nuclear Zeeman frequency m0I is given by
m0I = �cIB0/2p.

The value of the effective g-factor g 0 ” g 0(#,u) is gen-
erally orientation dependent according to the following
equation:

g0ð#;u;XgÞ ¼ gðXgÞþ � bð#;uÞ
�� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ � g2 � b
q

: ð10Þ
The Euler angles Xg determine the orientation of the
g-tensor in preselected coordinate system.

Notice that even though the above g and A tensors
are real and symmetric, it can be easily shown that the
matrix GM is real but not necessarily symmetric. This
problem pops-up when both g and A are anisotropic
and therefore the consequences of it were not further
studied in this work as they do not either appear to
influence the numerical simulation of the spectra.

The magnitudes of the ENSF�s for M = a,b are given
by defining their squares.

m2I;M ¼ bþ � Gþ
M � GM � b: ð11Þ

The matrix product of GM in the middle of the above
equation, which is back again a symmetric matrix, is
as follows:

Gþ
M � GM ¼ M2

g02
g � A2 � gþM

g0 m0Iðg � Aþ A � gÞ þ m20IE:

ð12Þ
Analytical expressions could be derived for a general

matrix GM in this work provided that the orientation of
the g- and A-tensors are both known in the same frame
of reference, here the nqi principal system U ” (X,Y,Z).
The frame U is used as a common frame of reference for
the entire system, including field direction. The Euler
angles Xg and XA, which specify the orientation of the
g- and A-tensors in the frame U, respectively, are part
of the necessary input, see further for definitions. The
case where only the A-tensor is anisotropic is analyti-
cally tractable and will be analyzed carefully in the
present work.

Generally, the Cartesian tensor A is a full 3 · 3 real
matrix when expressed in a frame other than its own
principal frame, as specified by the following
transformation:

A ¼ R � AD � Rþ; ð13Þ
where R ” R (XA) is the active rotation of the diagonal
tensor AD from its principal frame to the U-frame, spec-
ified by the columns of R. This rotation is determined
conventionally by the Euler angles XQA = (aQA, bQA,
cQA) for the inverse rotation of the above frames, [16].
The notation of the Euler angles is in this text simplified
to XA = (aA, bA,cA).

The components of the vector mI;M in the U-frame
could be expressed analytically as functions of relatively
few parameters, i.e., the parallel and the perpendicular

anisotropies, proportional to Tzz and Txx � Tyy of A ten-
sors, respectively, and the Euler angles XA, see Appendix
A. The best way to proceed is to present the explicit
expressions of the matrix elements of GM. First, the
diagonal elements of the ENS GM-tensor in the nqi
frame for isotropic g-tensor are summarized.

GðXX Þ
M ¼ Mfa� 1

2
½T ZZ � ðT XX � T YY Þ�g þ m0I ; ð14aÞ



Fig. 1. The value of the ENS frequencies (reduced by K) as a function of the polar angle # of the field orientation and the hfi anisotropy T. This figure
was obtained for axial A coinciding with the Q tensors (g-isotropic). The scalar part of the hf coupling a = 2.0848 MHz was kept constant. The other
parameters were: g = 0.47, and K = 1.4 MHz (m0I = �1.06 MHz close to cancellation of a). The explicit relation in Eq. (B.9) was used for this plot.
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GðYY Þ
M ¼ Mfa� 1

2
½T ZZ þ ðT XX � T YY Þ�g þ m0I ; ð14bÞ

GðZZÞ
M ¼ Mðaþ T ZZÞ þ m0I ð14cÞ

with,

T ZZ ¼ 1
2
½T zzð3cos2b� 1Þ þ ðT xx � T yyÞ cosð2aÞsin2b�;

ð15aÞ

T XX � T YY ¼ 3
2
sin2bT zz cosð2cÞ þ ðT xx � T yyÞ
� fsin4ðb=2Þ cos½2ða� cÞ�
þ cos4ðb=2Þ cos½2ðaþ cÞ�g: ð15bÞ

The Cartesian components of T with the capital indices
X, Y, and Z are meant in the Q-principal frame U, while
the Cartesian components in lower-case indices x, y,
and z are meant in the A-principal frame. If the tensor
components TXX, TYY are required separately one can
use a combination of Eq. (15b) with TXX + TYY =
�TZZ.

The off-diagonal elements of the GM matrix in the U-
frame are given by:

GðI;JÞ
M ¼ MT I;J with I ; J ¼ X ; Y ; Z; I 6¼ J : ð16Þ

Their relations to the components of the tensor A in its
own principal frame are given by:

T XY ¼ � 3
4
T zzsin

2b sinð2cÞ � 1
2
ðT xx � T yyÞ

� fcos4ðb=2Þ sin½2ðaþ cÞ�
� sin4ðb=2Þ sin½2ða� cÞ�g; ð17aÞ

T YZ ¼ 3
4
T zz sinð2bÞ sin c� 1

2
ðT xx � T yyÞ

� sin b½sinð2aÞ cos cþ cosð2aÞ cos b sin c�; ð17bÞ

T ZX ¼ 3
4
T zz sinð2bÞ cos cþ 1

2
ðT xx � T yyÞ

� sin b½sinð2aÞ sin c� cosð2aÞ cos b cos c�: ð17cÞ

Recalling the typical symmetry of the A-tensor Aij = Aji,
all the needed matrix elements are already taken into ac-
count by considering only the above five Eqs. (15a),
(15b) and (17a)–(17c).
The length of ENS vector is

jmI ;M j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½mðX Þ

I ;M �
2 þ ½mðY ÞI;M �

2 þ ½mðZÞI ;M �
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2X þ m2Y þ m2Z

q
: ð18Þ

(The last identity is a simplified notation omitting the M
dependence of the Cartesian components of the mI;M vec-
tor.) The length of the ENSF vector fulfills the typical
relation to its components in any coordinate system
but in spite of the orientation invariant form of Eq.
(18) the magnitude of this vector varies with the direc-
tion of the field. This is demonstrated in Fig. 1 but also
is easily seen by keeping in Eq. (11) only one of the com-
ponents of the field bX, bY, or bZ different zero, corre-
sponding to the three limiting field directions along the
three axes of the U-frame.

In the case of pure isotropic hfi all diagonal elements
of GM matrix are equal to Ma + m0I and all off-diagonal
elements are equal to zero giving an ENSF vector paral-
lel to the field with magnitude |mI;M| = |Ma + m0I|. If the
hfi A and/or the g-tensor are anisotropic, the field and
the ENSF vector are no longer parallel. A limiting case
of this situation is studied in detail in Appendix B.
4. General equations of the graphical method

One method to obtain enhanced visualization of the
nuclear frequencies of 14N, their orientation dependence,
and the singularities in the powder spectra is associated
with the graphical analysis of the Muha equation, Eq.
(8). For this purpose, a new equation concerning the tran-
sition frequency between a pair of consecutive eigen-
values, can be derived from Eq. (8). This treatment
follows exactly the mathematics in the isotropic case
which was analyzed in detail elsewhere [8,9,11,12], but
some quantities are more general, as it will be shown fur-
ther. Thus, by substitution of the eigenfrequency k 0 in Eq.
(8), by the sum k + m to the value of k of the next eigen-
value, and elimination the eigenfrequency k for the transi-
tion frequency m gives the following relation:
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qM ¼ �3�3=2ðm2 � pMÞð4pM � m2Þ1=2: ð19Þ
Dividing both sides of the above Eq. (19) by ~m2I;M and
rearranging some terms the following equality is
obtained:

F MðjmI ;M j; mÞ ¼ fMðmI ;MÞ; ð20Þ
where

F Mðm;#;uÞ ¼
1

~m2I ;M

�
2ð1� g2Þ � 3�3=2

� m2 � ð~m2I;M þ g2 þ 3Þ
h i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð~m2I;M þ g2 þ 3Þ � m2

q �
; ð21Þ

fMð#;uÞ � � 1

~m2I ;M
~m2I ;M � 3~m2z þ gð~m2y � ~m2xÞ
h i

¼ �1þ
3m2z þ gðm2x � m2yÞ

m2I ;M
: ð22Þ

The dependence of FM only on the magnitude of the re-
duced j~mI;M j � jmI;M=Kj and therefore also on the nqi, in
contrast to the dependence of fM on the not-normalized
full mI;M vector should be emphasized. This difference
gives the possibility for the graphical method to be
applicable as it is required by the method of the separa-
tion of variables. This principle is more straightforward
in the isotropic hfi case where the function f depends
of the field orientation while |mI;M| is constant [11].

The reduced eigenfrequencies of the nqi tensor ap-
pear as a product, 2 (1 � g2) = 2(1 � g) (1 + g), in the
constant coefficient of the secular equation qM. The
second equality in the Eq. (22) for the function fM
emphasizes the complete independence of fM on the
strength of the nqi. This function is obviously bounded
since |g| < 1 and the components of the vector mI;M
have to be shorter than its total length. In spite of this,
the function fM exhibits strong orientation dependence,
and it is also depending on the sublevel M = ±1/2, see
further.

Using the angles #M and uM which define the orien-
tation of the ENSF vector mI;M in the U-frame the func-
tion fM in Eq. (22) can be rewritten in the following
form:

fMð#;u;Xg;XAÞ ¼ �1þ 3cos2#M þ gsin2#M

� cos 2uM : ð23Þ

This is the generalization of the function,

f ð#;uÞ ¼ �1þ 3cos2#þ gsin2# cos 2u: ð24Þ
which occurs in the isotropic hfi case. However, the lim-
iting values of the function fM = �1 � g and 2 for mI;M
along the Y and the Z principal directions, respectively,
are the same as in the isotropic case irrespective the
magnitude of the hfi anisotropy and the nqi interaction.
The most straightforward way to check these character-
istic values of fM is to set the magnitude of the vector
mI;M in the Eq. (22) equal to the values mY and mZ, respec-
tively, and the other two components to zero. These ex-
treme values correspond to the Y and the Z directions
for the mI;M oriented along (#M,uM) = (90,90) and
(0,0) degrees, respectively, for g > 0. According to Eq.
(9) mI;M = GM Æ b the external magnetic field b does not
need in general to be directed along the principal axes
of the Q-tensor when the mI;M vector does. The matrix
GM acts as a transformation of the field which turns
mI;M away from the field direction b, depending on the
degree of the anisotropy. Furthermore, since GM is
not unitary the magnitude of the mI;M vector will vary
with the field orientation. (In the special case where
the principal axes of Q and A tensors coincide the mag-
netic field and the ENSF vector remain parallel even in
the anisotropic hfi case.)

Fig. 2 shows the function FM (m) calculated for differ-
ent values of ~m2I ;M with fixed value of g. The function
FM (m) consists of two branches, one for each of the signs
± in Eq. (21) and overlapping sets of definition m 2 [0,
mlim], where

~mlim ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2I ;M þ g2 þ 3

q
: ð25Þ

The value of mlim is fixed by the hfi and the magnitude of
the external field in the isotropic case, but in the aniso-
tropic case mlim is fully determined only as soon as the
field orientation also is known. Obviously, mlim varies
in a similar way as |mI;M| shown in Eqs. (11) and (12)
and visualized by Fig. 1. Also, mlim is the largest fre-
quency for which F is defined and where the two
branches of F meet exactly. For later use and for the
sake of better orientation in the graphical solution one
should note also that F (mlim) = F (mC) = 2(1 � g2)/
|mI;M|2, where mC = mlim/2 = (pM)1/2 is the middle point
of the frequency interval [0, mlim], where the function
FM is defined. Furthermore, F is symmetric with respect
to reflection about the horizontal line FM (mC) =
FM (mlim), called further the median of F.

The graphical solution of the single crystal problem is
represented by the intercepts of the functions FM (m) and
fM for each particular orientations of the field (#, u),
corresponding to a certain orientation (#M, uM) of
mI;M. The function FM (m) is first plotted vs. the transition
frequency m for the direction (#, u) of the external field,
while for that particular orientation the value of the
function fM is represented by a horizontal line in the
same 2D-plot such as in Fig. 2. The transition frequen-
cies m, where F crosses a horizontal f-line, correspond to
the single crystal solutions of the secular equation for
that particular orientation of the field. The two lower fre-
quencies belong to the single-quantum (sq) transitions
and third, the high frequency one, corresponds to the
double-quantum (dq) transition.



Fig. 2. Variation of the function F (m) with the orientation of the field. The field went round in the first octant of the unit sphere in the following path
of the spherical polar coordinates (#,u) = {(1) Z (0, 0); (2) ZX (45, 0); (3) X (90, 0); (4) XY (90, 45); (5) Y (90, 90); (6) ZY (45, 90); (7) XYZ (45, 45)}.
The orientations of the field along the three principal directions of the Q-tensor are particularly clarified in this figure by the heavy points of the F = f

intersections. Parameters: a = 2.12 MHz, T = 0.5 MHz, d = 0.05 ) A = (1.645, 1.595, 3.12) MHz. K = 1 MHz, g = 0.5 ) Q = (�0.5, �1.5,
2.0) MHz, and coincident tensors A,Q; m0I = �1.06 MHz. The isotropic part of the hfi in the M = 1/2 manifold is cancelled exactly by the nuclear
Zeeman, i.e., M a + m0I = 0 MHz. Notice also that in all the F-plots the relation F (mlim) > 2 ” f (Z) is valid for the cancelled manifold. For the non-
cancelled manifoldM = �1/2 the variation of the F-function with the orientation of the field leads to a great spread of the single quantum transitions
and the value of the mlim.
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Two special isotropic cases were widely used for the
practical analysis of the spectra and the estimation of
the hyperfine and quadrupole couplings. In one case
the isotropic hyperfine coupling a exceeded significantly
m0I and K thus the ~mI;M > 1 in both manifolds. In the sec-
ond case, the hyperfine coupling a/2 @ m0I gave ~mI;M ffi 0
and 2m0I, respectively, in the two manifolds. The influ-
ence of the anisotropic hfi on the ESEEM and ENDOR
spectra for these two important cases is specifically con-
sidered in this work.
5. Characteristic directions of the magnetic field

For the orientations of the ENSF vector along the
directions X, Y, and Z, the magnetic field will confine it-
self along modified characteristic directions X 0, Y 0, and
Z 0 under the influence of the anisotropy of the A tensor.
It will be shown how the modified characteristic direc-
tions can be computed. An example is given by the
determination of the characteristic direction Z 0. For this
purpose it is required that the ENSF vector mI;M points
along the Z-direction of the principal U-frame. Since the
field direction under the above described conditions
must be parallel to the new principal frame axis Z 0

which is unknown so far, the following equation can
be written:

mI;M � mZðMÞj j
0

0

1

0
B@

1
CA ¼ GM � b0: ð26Þ

It is easy to reverse this vector equation and solve for b 0,
a task which within the present theoretical framework
can be performed also analytically in principle using
Eqs. (14)–(17).
b0 ¼ jmZðMÞjG�1
M �

0

0

1

0
B@

1
CA ¼ jmZðMÞj

½G�1
M �XZ

½G�1
M �YZ

½G�1
M �ZZ

0
B@

1
CA: ð27Þ

Since the b 0 is a unit vector one can simultaneously
determine the magnitude of the ENSF vector using the
following equation.

mZðMÞj j ¼ mI ;Mj j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½G�1

M �2XZ þ ½G�1
M �2YZ þ ½G�1

M �2ZZ
q	

:

ð28Þ
The other two characteristic directions X 0, Y 0 of the field
can be determined similarly, using the first and the second
column of the invertedGMmatrix, respectively, consider-
ing the configurations for which mI;M points along the X
and Y directions. Notice that the only parameters in-
cluded in the specification of the characteristic directions
were the relative orientation of theA and theQ tensor (the
Euler angles XA). In the anisotropic case, the three modi-
fied characteristic directions of the field are in general not
orthogonal. Examples of the calculation of the new char-
acteristic direction for onlyA-tensor anisotropy are dem-
onstrated in Appendix B and visualizations of the new
directions are seen later together with the graphical solu-
tion. The parameters used in the calculations and the
graphical method were the same as the ones in the full
spectral simulation. In the graphical approach, the col-
umns (vectors) of the inverses ofGa andGb, representing
the new characteristic directions for the two manifolds,
are referred to the Q-tensor principal frame.

When the g-tensor is anisotropic the matrix GM in
Eq. (9) becomes also dependent on the field orientation
through the variation of the effective g-factor g 0 (#,u) in
Eq. (10), and the new characteristic directions cannot be
determined by using the above simple method. For this
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reason the g-tensor anisotropy will be treated in a sepa-
rate work, where also a recursive variation of the above
method will be exemplified.
6. Transition frequencies along the characteristic

directions

It is not difficult even in the anisotropic case to obtain
analytical expressions for the nuclear (ESEEM/EN-
DOR) transition frequencies when the magnetic field is
along the modified characteristic directions due to the
hfi and/or g-tensor anisotropy.

The following equations display those remarks:

dq : ~mðX Þ1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2X þ ðgþ3Þ2

4

q
F : ~mðX Þ

2;3 ¼ 1
2
3ðg� 1Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2X þ ðgþ3Þ2

4

q����
����

9>>=
>>;

for mI ;MkX and B0kX0;

ð29aÞ

F : ~mðY Þ1;3 ¼ 1
2
3ðgþ 1Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2Y þ ðg�3Þ2

4

q����
����

dq : ~mðY Þ2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v2Y þ ðg�3Þ2

4

q
9>>=
>>;

for mI;MkY and B0kY0;

ð29bÞ

F : ~mðZÞ1;2 ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2Z þ g2

q����
����

dq : ~mðZÞ3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2Z þ g2

q
9>>=
>>; for mI ;MkZ and B0kZ0:

ð29cÞ
The characteristic transition frequencies are given in re-
duced K units of the quadrupole strength in order to
Fig. 3. Plot of the eigenfrequencies function EðkÞ ¼ ½k3 � pMkþ 2ð1� g2Þ�=~m
function f (#,u), revealing the manifold M-degeneracy of the pure quadrupo
respectively, occurring for the characteristic directions of the field. The nqi c
respectively, while the isotropic case with scalar hf-coupling constant a =
demonstration of this method.
achieve compact notations. Explicit expressions for the
reduced components of the ENSF vector ~mI;M ¼ ð~mðX Þ

I ;M ;
~mðY ÞI;M ;~m

ðZÞ
I;MÞ � ð~mX ;~mY ;~mZÞ which appear under the square

roots were derived in an earlier section, Eqs. (9) and
(14–17), valid for anisotropic hfi but isotropic g-tensor.
Analytical computations for some limiting cases are
considered in detail in Appendix B. The M-dependence
of the above transition frequencies should also be pointed
out. They were computed as differences of the frequency
eigenvalues of the simplified secular equations which
come about by considering the field along each one of
the three characteristic directions. Suppose that the field
is chosen along X characteristic direction. The corre-
sponding pure quadrupole state |Xæ remains unscrambled
in both manifolds and does not contribute to the ESEEM
spectrum as it will be explained further. The other two
pure quadrupole states |Yæ and |Zæ mix by the effective
nuclear Zeeman. The ESEEM transition appears at the
difference of their eigenfrequencies,

mX ¼ jkY � kZ j; ðcyclicÞ: ð30Þ
Only two ESEEM transitions can be observed in this
case, the transitions mðX Þ1 ðM ¼ �1=2Þ in the two suble-
vels. The remaining ESEEM transitions |Xæ M |Yæ and
|XæM |Zæ which involve the pure quadrupole state |Xæ
cannot be observed because no branching of these states
through any other is impossible. The two identical states
can be formally labeled by the sublevel- projection
Sz0 � M ¼ �1=2, i.e., |XMæ, and must be considered sub-

level-M degenerate. A simplified variation of the graph-
ical method in the Fig. 3, treating rather the
eigenfrequencies than the transition frequencies, is best
demonstrating some of these facts.

Actually any of the Eqs. (29) gives back the pure qua-
druple frequencies for conditions of full cancellation
2
I ;M along with the horizontal lines for the characteristic values of the f-
le eigenstates |Xæ, |Yæ, and |Zæ with eigenvalues 1 + g, �1 � g, and 2,
onstant and the asymmetry parameter were K = 1.6 MHz and g = 0.5,
5 MHz and m0I = �1.06 MHz was taken for the purpose of easier
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mI;M = 0. The relations in Eq. (29) however are not lim-
ited to cancellation but they are quite general regarding
the magnitude of the frequency mI;M. They do not either
require isotropic hfi/g-tensors. Analogous expressions
have been given in the Table 1 of the article of Lee et al.
[12] for the case of all threeg,A, andQ tensors coinciding,
while the above relations include even non-coinciding ten-
sors through the square of the components mX, mY, and mZ
for arbitrary ENSF vector. However, Lee et al. refer to
transitions under orientation selection conditions and
they denote these limiting solutions according to Muha,
so that comparison to the solutions mðX Þ

1 , mðY Þ2 , and mðZÞ3 of
the present work is not easy. It was verified however that
the analytical transition frequencies in both works were
identical for conditions where both were valid.

In the limit of small effective nuclear Zeeman fre-
quencies mI;M, i.e., for very low field and hfi or under
cancellation conditions of the isotropic part of the hfi,
the above three solutions become approximately equal
to the pure quadrupole frequencies, (3 ± g)K, 2gK. They
correspond to X-, Y-, and Z-polarized transitions, or to
the more used symbols m+, m�, and m0, of Flanagan and
Singel [11]. To the other extreme of large effective nucle-
ar Zeeman the explicit solutions mðX Þ1 , mðY Þ2 , and mðZÞ3 be-
come high-frequency dq transitions.

Summarizing this section, only the transitions at the
frequencies mðX Þ

1 , mðY Þ2 , and mðZÞ3 in Eq. (29) will be visible
in single crystal ESEEM spectra. These are the transi-
tions that do not involve the corresponding manifold-
degenerate states |XMæ, |YMæ, and |ZMæ, respectively,
for M = ±1/2. However, even the other two (Forbid-
den) transition frequencies mðX Þ

2;3 , m
ðY Þ
3;1 , and mðZÞ1;2 for each

characteristic orientation are important for powders be-
cause they represent the stationary points of the transi-
tion frequency m with respect to corresponding field
orientations. The ideal ENDOR powder spectra, Ref.
[17], are expected to obtain the characteristic patterns
at all the frequencies of Eq. (29).
7. Stationary points

The appearance of the characteristic features in the
powder spectra is connected with stationary points of
the transition frequency m (#,u) at the field orientation
(#,u), which can be determined from the graphical inter-
sections of the functions FM and fM and the manipula-
tion of the matrix GM.

The particular shape of the characteristic features,
such as divergences maxima or steps depends mainly
on the kind of the stationary point, which can be a max-
imum, a minimum, or a saddle point! Furthermore, the
characteristic shapes vary if the location of the extre-
mum is on the rand (at the limiting points of the set of
definition) of the function m (#,u) or at a point inside
the definition set.
A useful equation for the stationary points of the
transition frequencies m (#,u), which connects directly
the differentials of f and m, decreasing thus the formal
dimensions of the problem to two, can be derived.

dm ¼ df =F 0ðmÞ: ð31Þ

A similar equation was given first for the CW-EPR res-
onant fields by Kottis and Lefebvre [10]. This relation
shows that there exist two different kinds of stationary
points of interest in the present context. One of them
can be obtained for finite derivative F 0 (m) for df = 0,
and the second when the derivative F 0 (m) diverges to
infinity. Both cases are important for the ENDOR/
ESEEM powder lineshapes.

The first kind of stationary points is easiest exempli-
fied for coinciding tensors. The transition frequencies
can be read directly on the frequency axis at the cross-
ings of the F with the horizontal lines f when the field
is along the principal axes of the Q-tensor. For non-co-
incident tensors the modified characteristic directions X 0,
Y 0, and Z 0 of the field must be determined before a
graphical solution is possible.

From the diagrammatic solutions in the present paper,
it can be observed that in most cases F satisfies the condi-
tion F 0 „ 0 at a stationary point. However, there are
exceptions where the f lines are very close to a horizontal
tangent of the F curve. This can happen in two cases: (i) if
the values of two solutions are very close, (ii) for the low-
est-frequency intersectionsF \ f in systemswith relatively
large mI;M. (These cases are visualized in theY (�) intersec-
tion of the later Fig. 7(p) The corresponding ESEEM
transition frequencies usually are not visible.

The df = 0 case concerns primarily the sq transitions
which are generally difficult to observe in the anisotropic
g/A case because they require small mI;M, i.e., a great deal
of cancellation of the nuclear Zeeman by the hfi, while full
cancellation is a rare event in the anisotropic case.

A high-frequency transition assigned as a limiting dq
transition is approximately equal to the mlim and can be
influenced also by the second kind of characteristic
points discussed next and may result to a step down to
zero intensity. Since the derivative F 0 becomes infinite
for m = mlim, the particular field orientations (#,u) could
lead to accumulation of transitions in a small frequency
interval, and great intensity around this point in pow-
ders, in spite of eventually small transition probabilities
[10]. Among the possible characteristic powder patterns,
a maximum is expected for this point followed by a step

down to zero intensity. This is the only stationary m point
not related to a single characteristic direction and is thus
unimportant for single crystal spectra. The correspond-
ing patterns of the powders will generally occur at high
frequency, higher than the extreme intercepts with the f

function affecting the broadening of the dq transitions.
There are some additional factors that contribute to

the actual shape of the characteristic features in orienta-
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tion-disordered ESEEM spectra in comparison with
ENDOR. The characteristic features described above ex-
ist always for ideal ENDOR powders [17] but additional
effort is required to find the modified features in ESEEM
powders due to the vanishing intensities imposed by the
selections rules of ESE experiment at just the character-
istic directions. These general considerations are illus-
trated in details in the following sections.
8. Influence of the anisotropic hfi on the double-quantum

peaks

In the anisotropic case, the turning point mlim of the
function F is different for each orientation of the field
and can be determined by Eq. (25). Its position has
not a direct connection to the solution of the secular
equation in single crystals except for the rare case for
which m = mlim is a valid ESEEM/ENDOR transition
frequency. In powders, the maximum of the frequency
mlim can be a stationary point of the function m (#,u).
As the mlim varies with mI;M according to Eq. (25), see
Fig. 1, it becomes important to consider the spread of
the frequency mlim in the transition-frequency axis.

Thus, the mlim feature does not contribute always to
the powder spectra, or at least it is not a distinct addi-
tional solution. One clear case is the exact cancellation
for isotropic hfi, in which the cancelled manifold con-
tributes to the powder lineshape by three sharp pure
quadrupole peaks. Bringing up the analogy to systems
with small hf anisotropy (T/aiso < 0.2) and cancellation
of the isotropic part one can agree that the relation
2 < 2ð1� g2Þ=~m2I ;M or equivalently the strong quadrupole
condition |mI;M| < |K| (1 � g2) will lead to three relatively
sharp, nearly pure quadrupole peaks. This inequality
strongly depends on the relative values of g2 and ~m2I;M .
The median of F at the height FM (mlim) in this case lies
much higher than the FM = fM intersections for the can-
celled manifold with for M = 1/2 as seen in the Fig. 8.
The frequencies of the corresponding peaks are orga-
nized in three groups of similar frequencies with the
high-frequency peaks being slightly smaller than mlim.

Let the mlim correspond to the orientations (#M,uM)
of the ENSF vector satisfying the condition:

eM ¼ �1þ 3cos2#M þ gsin2#M cos 2uM ; ð32Þ
which leads to,

cos2#M ¼ 1� 2� eM
3� g cos 2uM

ð33Þ

with 0 6 eM ¼ 2ð1� g2Þ=~m2I;M 6 2 when the cosine of #M
is defined.

According to the above definitions, eM signifies the
particular value of fM for which the ENSF vector mI;M
has a particular orientation giving the transition fre-
quency mlim.
In the case of isotropic hfiwhere eM is constant for each
manifold, the connected set of orientations (#M, uM) sat-
isfying the condition in Eq. (33) contributes to the inten-
sity of the mlim peaks appearing at the frequencies,

mlim;� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0I � a=2Þ2 þ K2ð3þ g2Þ

q
: ð34Þ

For the anisotropic case, it is clear that the orientations
corresponding to mlim generally differ from the character-
istic directionsU, the principal axes of the nqi tensor. For
instance cos2#M = 1 is obtained for eM = 2 that strictly re-
quires 1� g2 ¼ ~m2I ;M , a condition not fulfilled for an arbi-
trary system (see Appendix C), while cos2#M = 0 is also
fulfilled in another particular situation with g = 1 at
uM = 0. The value of eM depends on the orientation of
the ENSF vector and mlim varies between (mlim)min and
(mlim)max, which are determined by ðm2I ;MÞmin and ðm2I ;MÞmax,
respectively. Because the m2I ;M computation can be per-
formed in any coordinate system, it is easy to find themin-
imum and maximum values of m2I ;M in the principal frame
of the hyperfine tensor. In the simple case of the axial hfi,

m2I;:M ¼ m2?;;M þ ðm2k;M � m2?;MÞcos2#B; ð35Þ

where #B stands for the orientation of the magnetic field
relative to the unique axis of the hf tensor and,

m?;� ¼ m0I �
a� T
2

; mk;� ¼ m0I �
aþ 2T

2
: ð36Þ

The expression in Eq. (35) shows that ðm2I;MÞmin is equal
to the smaller of the components m2?;� or m2k;�, while
ðm2I ;MÞmax is equal to the larger of them, if the condition
0 6 e 6 2 is fulfilled for all orientations of the magnetic
field. This condition guarantees that the wished transi-
tion frequency m = mlim is included among the set of the
solutions of the secular equation for some of the orien-
tations of the field.
9. Analytical applications

Fig. 4A shows the (stimulated) three-pulse ESEEM
and ideal ENDOR spectra [17] calculated with
a = 5 MHz,K = 0.4 MHz, g = 0.5, and |m0I| = 1.06 MHz,
in the absence of the anisotropic hfi, and for axial
anisotropic tensor with perpendicular components
T = ±0.5 MHz for coincident axes of the nqi and hfi
tensors. Fig. 4B shows spectral simulations of ESEEM
and ENDOR with the same parameters as above but for
misalignment b = 60� between the Z axes of the Q- and
A-tensors.

Only two peaks dominate the ESEEM spectrum for
T = 0. Their frequencies at 7.24 and 3.22 MHz almost
exactly correspond to the frequencies (7.26, 3.22) MHz
predicted by Eq. (34). The sharpest ENDOR peaks oc-
cur at the same frequencies.

The introduction of the anisotropic hfi with two
opposite values of T = ±0.5 MHz, shifts the frequencies



Fig. 4. (A) Simulations of stimulated ESEEM spectra (s = 200 ns), higher panels, ideal ENDOR [17], lower panels, for the following parameters:
K = 0.4 MHz and g = 0.5, or Q = (�0.20, �0.60, 0.80) MHz; |m0I| = 1.06 MHz, and a = 5 MHz, and coinciding nqi and hfi tensors. The traceless part
T of the hfi-tensor is defined as (�T, �T, 2T). (i) T = 0; (m) T = �0.5 or A = (5.5, 5.5, 4.0) MHz; (p) T = 0.5 or A = (4.5, 4.5, 6.0) MHz. In the
isotropic case we have: ESEEM peaks: 7.24, 3.22 MHz. ENDOR peaks and steps: 7.24, 4.76, 4.5, 3.92, 3.3, 3.22, 2.38, 1.9, 1.3, and 0.64 MHz. (B)
ESEEM and ENDOR simulations with the same parameters as in (A) but for non-coinciding A andQ-tensors. (m) T = �0.5 MHz, (p) T = 0.5 MHz.
Relative orientation of nqi and hfi tensors: (0, 60�, 0).
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of both major peaks to opposite directions, i.e., to high-
er frequencies for T = �0.5 MHz and to lower frequen-
cies for T = 0.5 MHz. This is easily seen in the following
equations, which depict the characteristic dq transition
frequencies in the case of coincident principal directions
of the nqi and hfi tensors. They were given earlier in this
text by Eq. (29) and were adapted for the present axial
hfi case, see Appendix B.

mdqX ;� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m0I � ða� T Þ=2�2 þ K2ð3þ gÞ2=4

q
; ð37aÞ

mdqY ;� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m0I � ða� T Þ=2�2 þ K2ð3� gÞ2=4

q
; ð37bÞ

mdqZ;� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m0I � ðaþ 2T Þ=2�2 þ K2g2

q
: ð37cÞ
For instance, for T = 0.5 MHz the following pairs of
values were obtained in the two manifolds M = ±1/2:
(mX,mY)dq;+ = (6.77, 6.69) MHz and (mX,mY)dq;� = (2.76,
2.58) MHz. They are actually very close to the values
(6.75, 2.77) MHz of the simulated spectra in Fig.
4A(m) and also to the mlim values (6.77, 2.78) MHz com-
puted by the following equation, which assumes orienta-
tion of the magnetic field in XY plane.

ðmlimÞ?;� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m0I � ða� T Þ=2�2 þ K2ð3þ g2Þ

q
: ð38Þ

However, it is certain that the latter frequencies in Eq.
(38) cannot contribute to the spectrum, because the
characteristic directions of the field and the direction
the mlim differ in general according to the above discus-
sion and Appendix C. Thus, one can conclude that in
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the presence of axial hyperfine coupling the characteris-

tic dq peaks which appear in the ESEEM/ENDOR spec-
tra correspond to the orientations of the magnetic field
in the XY-plane of the hyperfine tensor. This is sup-
ported by the shape of the simulated low-frequency dq
line, which has a shoulder at 2.56 MHz in the calculated
ESEEM spectrum, corresponding to the above peak
with frequency (mY)dq;� = 2.58 MHz.

Similar conclusion can be made for the ESEEM spec-
trum calculated with T = �0.5 MHz.

The ESEEM spectra calculated for non-coincident
axes of nqi and hfi tensors (Fig. 4B), in addition to the
maxima close to (mdq)X,M or (mlim)^,M show two smaller
features at 6.26 and 8.24 MHz for T = �0.5 and
0.5 MHz, respectively, both arising from the same
M = 1/2 manifold. Their positions are well-described
by the equation for mlim for the orientation of the mag-
netic field parallel to Z axis,

ðmlimÞk;� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m0I � ðaþ 2T Þ=2�2 þ K2ð3þ g2Þ

q
; ð39Þ

which gives calculated frequencies 6.29 and 8.24 MHz.
They exceed the characteristic dq frequencies for this ori-
entation, which are 6.13 and 8.13 MHz, computed by
Eq. (37c) for (mdq)Z;±.

These observations suggest that for non-coincident
axes the frequencies (mlim)max,M and (mlim)min,M corre-
spond to some intermediate orientation of the ENSF
vector and thus can contribute to the spectrum. The fre-
quencies (mlim)i,M for the opposite manifolds were com-
puted to 2.37 and 4.14 MHz but were not present in
the ESEEM spectra. However, observation of the (mli-
m)i,M even from one manifold opens the way for the
determination of Ai = a + 2T. Knowledge of A^ and
Ai allows the determination of a and T values sepa-
rately. It is important that the positions of the limiting

dq maxima in ESEEM spectra do not depend on the an-
gles describing the relative orientation of the nqi and hfi
tensors and can be used for the direct determination of
the A^ = a � T and Ai = a + 2T.

In the simulated ENDOR spectra the appearance of
spectral features at (mlim)^,M and (mlim)i,M frequencies de-
pended on the relative orientation of the nqi and hfi ten-
sors. The ENDOR spectra did not show any maxima at
the (mlim)^,M and (mlim)i,M frequencies for coincident axes
of the nqi and hfi tensors. The intensity was suppressed
at these frequencies and a broad dq line without well-
pronounced maximum was present in the spectra. How-
ever, for non-coincident axes the dq transition had the
typical ENDOR ‘‘powder’’ lineshape with a maximum
at (mlim)^,M and a step at (mlim)i,M. Similar behavior has
been observed for other relative orientations of the nqi
and hfi tensor.

Attempting to understand the above observations, it
was shown (Appendix C) that for these orientations
for which the mlim is a solution of the secular equation,
the locus of the tip of the mI;M vector must identify with
the 3D surface of the following hyperboloid of two sheets,
which circumvent the Z-axis.

~m2Z
ð1� g2Þ �

~m2X
2ð1þ gÞ �

~m2Y
2ð1� gÞ ¼ 1: ð40Þ

Inspecting this surface it becomes clear that the mI;M vec-
tor is prohibited to attain orientations parallel to the
XY-plane of the U-frame. Consequently, the intensity
of the solutions m = mlim is minimized. On the other
hand, for non-coinciding tensors the characteristic direc-
tions are not parallel to the U-frame anymore and the
possibility of the transition m = mlim for the ENSF vector
nearly parallel to a modified characteristic direction are
significantly increased, enhancing the transitions in
question.

Looking a little closer the ENDOR spectra in Fig.
4B, it becomes clear that for misaligned A- and Q-prin-
cipal axes both the high-frequency transitions mlim,^ and
mlim,i are present. Furthermore, their relative intensity
agrees with the typical spatial weight giving a peak for
the perpendicular direction and a step for the parallel
direction. Their intensity relative to the other peaks in
the ENDOR spectra is comparatively small, but the ab-
sence of any other peaks in the high-frequency region of
the present spectra makes their presence very clear. They
are both features of the M = 1/2 manifold in agreement
the high-frequency property and a formally positive nu-
clear resonance frequency |m0I|. Furthermore, in the
ESEEM spectra, these peaks are strongly amplified
comparing to the powder ENDOR, the perpendicular
edge being significantly more amplified against the par-
allel, which obtains the appearance of a weaker peak.
For coinciding tensors the parallel peaks are completely
absent in accord with the above discussion.
10. Comparison to the graphical method

Turning to the application of an extended graphical

approach on the anisotropic case, it is noticed that the
intersections of F for each of the characteristic directions
and the corresponding f were correlated with the spec-
tral features in the ENDOR or the ESEEM simulation,
or both.

The simulated ESEEM peaks at 7.24 and 3.22 MHz
for the isotropic hf case in Fig. 4A(i) corresponded al-
most exactly to the graphical solutions dq(�)
7.26 MHz and dq(+) 3.22 MHz obtained by conven-
tional F = f plots (not be shown) as in earlier studies.

Turning to the axial anisotropy case, the ESEEM/
ENDOR simulations for T = �0.5 MHz in Fig. 4A(m)
will be compared to the graphical intersections of Fig.
5(m). For greatest convenience of the reader the com-
parison between the ESEEM/ENDOR simulations with
the graphical method will be performed using primitive



Fig. 5. The graphical solution for axial hfi for the axial cases of the same system as in Fig. 4A. The intersections of the F curve with f for the field
along the principal Q-directions which are highlighted by the heavy points agree best to the simulations. (m-axis in reduced K-units. The figures in the
following primitive diagrams are in MHz).

(m) T = �0.5 MHz.

(p) T = 0.5 MHz.
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diagrams. They are placed in the legend of the graphical
method and display approximately the relative transi-
tion frequencies for each method from zero to the max
frequency along consecutive text lines. The hits of the
graphical intersection differing by less than 0.1 MHz
are in bold.

The strongest dq peaks in the ESEEM simulation at
7.73 and 3.66 MHz appear also in the perpendicular
dq intersections X (�) 7.75 MHz and X (+) 3.66 MHz,
respectively. Among the weaker ESEEM peaks the
strongest at 1.54 MHz is found as X (+) 1.53 MHz.
The ESEEM at 7.73 MHz finds correspondence to the
X (�) 7.75 MHz, while the ESEEM peak at 2.075 MHz
finds a graphical correspondence to the X (+) intersec-
tion at 2.13 MHz, which agrees better with the ENDOR
peak at 2.14 MHz. The ESEEM peak at 2.77 MHz finds
no better correspondence than the Y (+) at 2.66 MHz.
On the other hand, the ENDOR peaks and steps at
0.86, 3.58, 4.18, 4.7, and 6.2 MHz find good correspon-
dence to the graphical intersections Y (+) 0.86,
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3.53 MHz, X (�) 4.17 MHz, Y (�) 4.74 MHz, and Z(�)
6.13 MHz, respectively.

The agreement of the ESEEM/ENDOR peaks in Fig.
4A(p) for T = 0.5 and the graphical intersections of Fig.
5(p), is also very good as seen in the primitive diagram.

The strongest dq peaks in the ESEEM simulation at
6.75 and 2.77 MHz appear also in the perpendicular
dq intersections X (�) 6.77 MHz and X (+) 2.76 MHz,
respectively. Among the weaker ESEEM peaks the one
at 3.66 MHz is found as X (�) 3.68 MHz, the
2.56 MHz as dq Y (+) 2.58 MHz, while for the ESEEM
peak at 1.87 MHz the closest graphical intersection
X (+) 1.68 MHz agrees exactly with the corresponding
ENDOR peak at 1.68 MHz. Considering the ESEEM
peak at the lowest frequency of 0.94 MHz the corre-
spondence is best again between the closest ENDOR
and the graphical solution at X (+), both exactly
1.08 MHz. Finally the ENDOR peaks at 2.9, 5.24, and
8.12 find correspondence to the Z(�) intersections at
2.86, 5.26, and 8.13, respectively.

For tilted tensors three different F-curves are neces-
sary. In Fig. 6, the graphical solution for tilted A-,
Q-principal frames is shown. The summary of the inter-
sections together with the peaks and the steps of the sim-
ulations in Fig. 4B(m) (T = �0.5 MHz) appear in the
legend of Fig. 6(m) for easy comparison.

In addition to the diagrammatic solutions, using Eqs.
(38) and (39), two perpendicular and parallel (mlim)max

doublets are expected for |m0I| = 1.06 MHz, at about
dq^,± = (7.76,3.67) MHz and dqi,± = (6.29,2.37) MHz
for T = �0.5 MHz. They were also introduced in the
diagram in bold and italics in order to obtain a complete
picture. The two perpendicular limiting bi dq peaks find
correspondence to the strongest simulated ESEEM
Fig. 6. The graphical solution for axial hfi for the same system as in Fig. 4B, b
curves with the horizontal lines f (XACT), f (YACT) and f (ZACT) for which the
The limiting dq transitions have to be computed separately, vide infra, and ar
following primitive diagrams are in MHz).

(m) T = 0.5 MHz.

(p) T = �0.5 MHz.
peaks at 7.73 and 3.66 MHz. The corresponding EN-
DOR peaks agree also well. Even the parallel peaks at
6.29 MHz and at 2.37 MHz are in agreement with the
relatively strong ESEEM peak at 6.26 MHz and the
much weaker at 2.3 MHz. Among the fourth and fifth
stronger ESEEM peaks at 4.15 MHz and at 2.00 MHz
the first does not correspond to any graphical intersec-
tion while the closest characteristic frequency of the sec-
ond is found at the intersections ZACT(�) 2.2 MHz.
Among the weaker peaks the ENDOR transition at
1.52 is found exactly at the intersection ZACT(�)
1.52 MHz and the ESEEM/ENDOR at 4.8/4.82 MHz
at ZACT(�) 4.88 MHz. The ESEEM/ENDOR peaks at
2.6 MHz is found at the intersection YACT(+) 2.6 MHz.

Finally, the data from the ESEEM/ENDOR simula-
tion for T = 0.5 MHz in Fig. 4B(p) and the graphical
intersections at the modified characteristic directions in
Fig. 6(p) are compared. The perpendicular (mlim)max dou-
blet is expected according Eq. (38) for |m0I| = 1.06 MHz
at about dq^,± = (6.78,2.78) MHz. The corresponding
simulated ESEEM peaks at 6.76 and 2.77 MHz agree
very well. Except for the above perpendicular limiting
dq peaks the related parallel peaks dqi,± = (8.25,4.14) MHz
were also computed using Eq. (39), and they were found
to correspond to the simulated ESEEM and ENDOR
peaks at 8.24 MHz and an ENDOR peak at 4.12 MHz,
respectively. The last transition was not present in
ESEEM in spite the heavy superposition in the band
3.68–4.8 MHz in the ENDOR simulation most probably
the particular transition moments of ESEEM lead to
very small relative intensities of the peaks in that inter-
val. In the same interval, out of the two ESEEM transi-
tions at 4.72 and 4.88 MHz present in the simulation,
only the first is found in the graphical intersection as
ut tilted A, Q principal axes by b = 60�. Only the intersections of the F
field is along the modified characteristic directions count as solutions.
e seen in bold and italics. (m-axis in reduced K-units. The figures in the

c
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ZACT(�) 4.72 MHz. The simulated ENDOR transition
at 2.66 MHz agrees well with the intersection YACT(+)
2.6. The rest of the simulated ESEEM transitions are
very weak and are not either appear in the graphical
method. The ENDOR transition at 3.68 MHz corre-
spond best to the XACT(+) = XACT(�) graphical inter-
sections at 3.56 MHz, but they are in the limit of the
accepted error. The low ENDOR frequencies at 1.08
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and 0.76 MHz do not correspond to any graphical
intersection frequencies which are all too low, and gen-
erally the remaining intersections do not correspond to
any simulated ENDOR or ESEEM frequencies. Gener-
ally speaking the graphical method in this case was not
as good.

It is obvious that the limiting dq transitions (mlim)max

were missing from the diagrammatic method because
the characteristic directions are generally different from
the ‘‘fourth characteristic direction.’’ They must how-
ever be included to the values of the characteristic dq fre-
quencies found by the intersections F = f in the graphical
solution. They comprise together the peaks found also
in the spectral simulations.
11. Cancellation in the presence of the anisotropic hfi

For isotropic hfi, an important case analyzed in de-
tail and used repeatedly for the interpretation of exper-
imental spectra, is the case of exact cancellation. It can
be achieved experimentally by adjusting the external
magnetic field so that the value of the nuclear Zeeman
frequency satisfies the condition m0I = |a|/2, giving
ENS frequency |M a + m0I| = 0 in the canceled manifold

and 2m0I in the second one [11]. The orientation-inde-
pendent ENSF value for isotropic hfi is exchanged by
the magnitude |mI;M| of the ENSF vector for anisotropic
hfi. The variation of the magnitude of this vector with
the field orientation practically eliminates the possibility
of exact cancellation. The 3D plot of |mI;M| vs. the field
orientation in Fig. 1 demonstrates that the ENSF for
M = 1/2 becomes approximately zero in a limited subset
of the field-orientation space, a line in the horizontal
plane, where the full cancellation condition mI;M = 0 is
satisfied.

At the points of full cancellation the linear combina-
tion of both the isotropic and the anisotropic part of the
hfi for that particular orientation of the field cancel ex-
actly the nuclear Zeeman. A zero value of mI;M can only
be obtained in the rare (if not impossible) event that all
the components of the ENSF vector vanish simulta-
neously. On the contrary the cancellation of the isotropic
part of the hfi can be easily realized. This situation, i.e.,
|a| = 2 |m0I| in the anisotropic hfi case, has to be distin-
guished from the full cancellation mI;M = 0 and the exact
cancellation in the isotropic hfi case. To point out the dif-
ferences the employment of the particular name cancella-
tion of the isotropic part of the hfi will be used further.

Some explicit results for the simple case described in
the Appendix B, i.e., axial hfi and misalignment of the Q
and A tensors XA = (0, b, 0), could be derived for the
field along the modified characteristic directions,
according to Eq. (29). By a slight extension they reveal
the influence of anisotropic hfi on the pure nq frequen-
cies in the manifold where the isotropic part of the hfi
has been cancelled, i.e., for M such that M a + m0I = 0.
The allowed dq ESEEM transitions frequencies for the
field along the modified characteristic directions follow
in terms of the corresponding components of the ENSF
vector under the square root, computed analytically for
this limiting case.

mðX Þ1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2X þ K2ðgþ 3Þ2=4

q
for mI;MkX and B0kX0;

and mX ðMÞ ¼ �T
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 3 cos 2b

p ; ð41aÞ

mðY Þ2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Y þ K2ðg� 3Þ2=4

q
for mI;MkY and B0kY0;

and mY ðMÞ ¼ �T =2; ð41bÞ

mðZÞ3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Z þ K2g2

q
for mI ;MkZ and B0kZ0;

and mZðMÞ ¼ �T
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 3 cos 2b

p : ð41cÞ

The double sign indicates the dependence of the transition
frequencies only on the magnitude of the perpendicular
anisotropyT. The only sign requirement for the cancelled
manifoldM isMa > 0 for the normal nuclei with m0I < 0.

Used for the system with the y-60� tilted A-principal
frame compared to the Q-principal frame the Eqs.
(41a)–(41c) give three new frequencies, (mdq)X,can-
celled = 3.58 MHz, (mdq)Y,cancelled = 2.55 MHz, and
(mdq)Z,cancelled = 1.14 MHz, which are present in the sim-
ulated spectra of Fig. 7B (compare: 3.58, 2.6, and
1.18 MHz, respectively) for both T =±0.5 MHz. The
new frequencies differ very little from the pure quadru-
pole frequencies as it is obvious from the small contribu-
tion of the components of the ENSF vectors in the Eq.
(41) for the present case of small axial anisotropy.

The analytical expressions for the frequencies of the
non-cancelled manifold were too complicated to be
practically useful, except for the Y 0 characteristic direc-
tion of the field in this particular limiting case. The fol-
lowing relation shows this component of mI;�M, which
also gives a small contribution to the transition fre-
quency for the present case.

mY ð�Þ ¼ 2m0I þMT : ð42Þ
The peaks computed by this relation at (2.37, 1.87) MHz
are detectable in the ideal ENDOR spectra but they are
very weak.

Simulated three-pulse ESEEM and ideal ENDOR
spectra of 14N in doublets with anisotropic hfi and the
scalar part cancelled are seen in Figs. 7A and B. The
spectra consist in the four well-known lines of the isotro-
pic case under exact cancellation conditions, the three
relatively sharp peaks at the pure nq frequencies from
the cancelled manifold and the dq-transition from the
other manifold, which are slightly modified. The dq fre-
quency at 5.57 MHz is well reproduced by



Fig. 7. (A) Ideal ENDOR and stimulated ESEEM (s = 200 ns) spectra simulated with the following parameters: K = 1.0 MHz, g = 0.5 resulting to
Q = (�0.5, �1.5, 2.0) MHz; |m0I| = 1.06 MHz, and a = 2.12 MHz. (a) T = 0; (m) T = �0.5 MHz or A = (2.62, 2.62, 1.12) MHz; (p) T = 0.5 MHz or
A = (1.62, 1.62, 3.12) MHz. The traceless hfi-tensor T is defined as (�T, �T, 2T). Coinciding nqi and hfi tensors. (i) ESEEM peaks: 5.53, 3.5, 2.5, 1.0;
ENDOR peaks and steps: 5.56, 3.5, 2.5, 1.0. (m) ESEEMpeaks: 5.9, 5.45, 5.29, 3.54, 2.36,1.46, 0.977; ENDOR peaks and steps: 5.5, 4.8, 3.68, 3.56, 2.5,
2.36, 1.02. (p) ESEEMpeaks: 5.86, 5.13, 3.62, 2.48, 2.3, 1.34, 1.01; ENDORpeaks and steps: 5.84, 5.1, 3.66, 3.56, 3.32, 2.5, 2.34, 1.82, 1.02. (B) ENDOR
andESEEMspectra calculated for the sameparameter as inFig. 6Abut tiltedA andQprincipal frameswith relative orientation of nqi andhfi tensors: (0,
60�, 0). (m) T = � 0.5 MHz; (p) T = 0.5 MHz. (m) ESEEM peaks : 5.94, 3.54, 2.6, 2.44, 1.14, 0.977; ENDOR peaks and steps: 5.9, 5.0, 3.56, 2.52, 2.2,
1.14–1.02 (p) ESEEM peaks: 6.35, 5.29, 5.09, 3.58, 2.6, 2.44, 1.18, 0.977; ENDOR peaks and steps: 6.26, 5.22, 3.56, 2.54, 1.16–1.04. (All figures of the
spectra are in MHz.)
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mlim;� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m20I þ K2ð3þ g2Þ

q
: ð43Þ

The anisotropy of the hfi may split the dq peaks of the
ESEEM/ENDOR spectra or modify the shape of the
dq peak to the powder type. It also may increase the
width of the pure quadrupole transition peaks and split
them in some cases.

In general, mlim has maximum value 4 m0I when the nqi
parameter K is small, while under full cancellation ob-
tains the minimum value (mlim)min = 2K (g2 + 3)1/2.

In ESEEM powders eventual sq peaks are located
around the central frequency of definition of F (m),
m = mC. The ability to detect the sq transitions in the
spectrum is, however, inversely proportional to their
width. Flanagan and Singel [11] derived an approximate
relation for the width of the sq transitions by Taylor
expansion of F about the central frequency mC . Using
the notations of the present work the relation for the
width of the single quantum transitions dmsq would be
transcribed to:

d~msq ¼
3ðgþ 3Þ~m2I ;M

2ð~m2I;M þ g2 þ 3Þ
: ð44Þ

It is of interest here to investigate the near cancellation
situation of the isotropic part for anisotropic hfi. The
approximate width dmsq 	 3(g + 3) (mI;M/K1/2)2/2
(g2 + 3) computed in this case implies increasing broad-
ening of the sq transitions for greater deviation from
cancellation and/or decreasing K. In the opposite ex-
treme where the transition frequencies are determined
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by the nuclear Zeeman, i.e., for small quadrupole
strength K and/or large hfi, the relation dmsq 	 3(g + 3)
K/2 is obtained, which can be as much as 6 K and exceed
the resonance frequency for the usual case of m0I 	 K.
Summarizing, both for a decrease of a large K and an in-
crease of small K will broaden the sq transitions.
12. The graphical solution

The ESEEM and ENDOR spectral simulations for
cancellation of the isotropic part of the hfi shown in
Figs. 7A and B are compared with the graphical solution
of the problem in Figs. 8 and 9. The chosen system had
intermediate nqi strength with |Km0I| @ 0.94 and the spec-
tra here compare rather well to the corresponding iso-
tropic case of Flanagan and Singel [11]. The deviation
from the cancellation can be measured for the present
scalar cancellation by the quotient |Tm0I| @ 0.47, which
for isotropic hfi according Flanagan and Singel leads
to a substantial destruction of the pure quadrupole triplet.

The conventional graphical method in the isotropic
case (not shown) under cancellation displays very accu-
rate values of the pure quadrupole peak positions 1.0,
2.5, and 3.5 MHz, and the dq peak at 5.56 MHz of the
non-canceled manifold. However, the destruction of
Fig. 8. The graphical solution for the axial hfi cases for the same system a
�1 � g, which are highlighted by the heavy points count as the solutions of th
T = �0.5 MHz; (p) T = 0.5 MHz.
the pure quadrupole triplet with the deviation from
cancellation is not that serious in the present system.
The basic isotropic peak structure of the simulated
spectra remains almost unchanged for the anisotropic
hfi, with small variations such as splitting and/or
broadening of the peaks. This basic pattern agrees in
the extended graphical method seen in Fig. 8(m) and
(p). We note that the anisotropy deviation of the hfi
|T/aiso| = 0.24 for this example is double as much as
in the first example of Figs. 4A and B but still rather
small.

To facilitate the understanding of the diagrams two
notes are in order.

(i) The graph of the partially cancelled manifold is the
same for both T = ±0.5 MHz and the transition
frequencies are consequently differentiated only
by the non-cancelled manifold.

(ii) Only two distinct F (m) curves, one for the perpen-
dicular and one for the parallel orientation of the
field to the unique symmetry axis of the A-tensor,
exist in the present case due to the coinciding hfi
and nqi tensors.

As seen in the diagram of the partially cancelled man-
ifolds in Fig. 8(m) and (p) the median axes of the func-
s in Fig. 7A. Only the intersections of the F curves with f = 2, 1 � g,
e problem for the field along the principal Q-directions. Axial cases: (m)



Fig. 9. The graphical solution for axial hfi for the same system as in Fig. 7B, but tilted A, Q principal axes by b = 60�. Only the intersections of the F
curves with the horizontal lines f (XACT), f (YACT) and f (ZACT) for which the field is along the modified characteristic directions count as solutions:
(m) T = �0.5 MHz peaks: ZACT (1.2, 2.4, 3.55, dq = 5.1) MHz; XACT (1.0, 2.55, 3.65) MHz; YACT (0.9, 2.55, 3.5, dq = 5.4) MHz. (p) T = 0.5 MHz
peaks: ZACT (1.15, 2.35, 3.55, dq = 5.05) MHz; XACT (1.0, 2.55, 3.52, dq = 5.75) MHz; YACT (0.9, 2.55, 3.5) MHz. The limiting dq transitions have to
be computed separately, vide infra.
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tions F are located rather high compared to f (Z) = 2,
i.e., F (mC) > 2. Thus, a weak orientation dependence of
the transition frequencies is expected for this manifold,
while the non-cancelled manifold displays substantial
orientation dependence and corresponding disintegra-
tion of the sq peaks. In the latter case, the dq peaks
are the only detectable transitions present at the value
mlim seen in Eq. (25). The dq transition can be further-
more split by the difference between the limiting fre-
quencies in the parallel and the perpendicular direction.

As a complement to Fig. 9 where the graphical solu-
tion for tilted A-, Q-principal frames are given, two
(mlim)max doublets at about (4.85, 5.95) MHz for
T = �0.5 MHz, and (5.19, 6.36) MHz for
T = 0.5 MHz were computed using Eqs. (38) and (39).
It is obvious that the (mlim)max are missing from the dia-
grammatic method because the characteristic directions
are generally different from the ‘‘fourth characteristic
direction’’ corresponding to the limiting dq transition
at mlim. These pairs together with the values of the char-
acteristic frequencies in the graphical solution comprise
together a good representation of the peaks found also
in the spectral simulations of Fig. 7B.
13. Summary of results

(1) Analytical expressions of the ENS g-tensor GM

in the principal Q-frame and the ENSF vector
components for the two sublevels M = ±1/2
under the influence of the hfi anisotropy, were
derived.

(2) The ENSF vector mI;M, which has amplitude the
ESEEM/ENDOR frequency before the consider-
ation of nqi, could be expressed in terms of: (i)
the scalar hf coupling a, (ii) the principal compo-
nents of the A-tensor, (iii) the Euler angles XA of
the A-tensor with respect to the nqi, (iv) the polar
and azimuthal angles (#, u) of the field direction
with respect to the Q-principal frame, and (v) the
nuclear Larmor frequency m0I.

(3) The stationary points of the transition frequencies m
were obtained with the ENSF vector mI;M along
the principal orientations with respect to the princi-
pal Q-frame, as in the isotropic hfi case.

(4) New field directions X 0, Y 0, and Z 0 corresponding
to the above stationary points were defined as mod-
ified characteristic directions, deviating from the
principal Q-tensor directions due to the hfi anisot-
ropy. The new characteristic directions were
obtained by using the GM matrix.

(5) The extreme/limiting values of the function fM (#,
u; Xg, XA) at the stationary points with respect to
the field orientation (#, u) were exactly the same
as in the isotropic hfi case, i.e. �1 � g, �1 � g, 2
for mI;M along X, Y, and Z, respectively.
(6) The maxima in the absorption mode of the ideal
ENDOR powders are expected to occur at the sta-
tionary points of f with the field along the corre-
sponding characteristic direction. An additional
stationary point giving a peak is expected in the
ENDOR powders at the well-defined maximum

frequency mmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2I ;M þ K2ðg2 þ 3Þ

q
. No charac-

teristic direction of the field is expected for this
max.

(7) The impact of the cancellation condition on the
ESEEM spectra in the anisotropic case is expected
to be generally smaller than in the isotropic case
due to the orientation dependent ENSL frequency
mI;M and the small probability of the full cancella-

tion mI;M = 0 only in very few orientations of the
field. However, for small hfi anisotropy, cancella-
tion of the isotropic part gives very similar spectral
configuration as the exact cancellation in isotropic
hfi systems.
14. Conclusion

The greatest obstacle in generalizing the graphical

method to the powder spectra of polyoriented samples
in systems with anisotropic hfi and/or g-tensor, is the
dependence of the function F on the orientation of the
field through the magnitude of the reduced ENSF
|mI;M/K|.

To cope with this problem, and actually expand the
potential of the graphical method in delivering useful
structural information even in the anisotropic case the
following procedure can be used:

(i) Derivation of the modified orientations of the field
for the three characteristic directions in the case of
non-coinciding tensors and assignment of each one
of them.

(ii) Computation of |mI;M| for each of the above
directions.

(iii) Creation of separate 2D-plots of the F-function for
each of the modified characteristic directions Z 0,
X 0, and Y 0 of the field that contain also the straight
horizontal lines corresponding to the limiting val-
ues of f = 2, �1+g, and �1�g, respectively.

(iv) Only the intersection FM (m) = fM(U 0) for U 0 either
X 0,Y 0, or Z 0 corresponding to the respective char-
acteristic direction can be used to obtain the solu-
tions and the characteristic features of the ideal
ENDOR powders for the nuclear sq and dq
transitions.

(v) The limiting dq transitions have to be treated sep-
arately at least for the tilted A and Q tensors, by
analytical computation of the peaks using Eqs.
(38) and (39), since there are not necessarily pres-
ent in these diagrams.
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One can suggest that the graphical approach modified
for the case of the anisotropic hyperfine interaction can
be used as useful supporting technique for the analysis
and the simulation of the ESEEM/ENDOR powder
spectra. The graphical approach provides direct infor-
mation about all possible transition frequencies in these
spectra that would help for the assignment of the ques-
tionable features in simulated and experimental spectra
with final aim the determination of the hf and nq
interactions.
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Appendix A. The standard spherical transformation

properties of the matrix A

The five standard spherical components of the trace-
less part T(2) of the symmetric tensor A(2) of second rank,
e.g., the hfi tensor, are given in terms of the Cartesian
components by the following relations:

T 2;0 ¼ 1ffiffi
6

p ½3Azz � trðAÞ�;
T 2;�1 ¼ �ðAzx � iAzyÞ;
T 2;�2 ¼ 1

2
ðAxx � AyyÞ � iAxy :

9>=
>; ðA:1Þ

The tensor T(2) defined as T(2) = A(2) �tr{A(2)}/3 is sub-
stantially simpler in its principal frame as seen in the fol-
lowing equation:

T 2;0 ¼ 1ffiffi
6

p 3T zz ¼
ffiffiffiffiffiffiffiffi
3=2

p
T zz;

T 2;�1 ¼ 0; T 2;�2 ¼ 1
2
ðT xx � T yyÞ:

)
ðA:2Þ

Using the above standard spherical tensor components
of T, the following equation gives the transformation
of a component Tq from the principal A-frame to the
principal Q-frame, [16].

T ð2;QÞ
q ¼

X
q0

T ð2;AÞ
q0 Dð2Þ

q0qðXQAÞ

¼ T ð2;AÞ
0 Dð2Þ

0;qðXQAÞ þ T ð2;AÞ
�2 ½Dð2Þ

�2;qðXQAÞ þ Dð2Þ
2;qðXQAÞ�:

ðA:3Þ

Eq. (13) which involves the Cartesian rotation matrix R
is equivalent with the last equation but the application
of Eq. (A.3) is substantially simpler. The symbols Dpq

are the matrix elements of the Wigner rotation matrix,
found in any standard group-theory textbook. One
has, however, to be careful with the correct sense of
the Euler angles XQA used in Eq. (A.3). For an active

rotation of the tensor A from its principal frame to the
new frame Q, by convention the Euler angles XQA sig-
nify the inverse rotation of the principal coordinate
frames Q to A, see [16].
Appendix B. Analytical treatment of limiting cases: axial

A-tensor and tilt A, Q-axes

In this appendix the limiting case of isotropic electron
Zeeman and axial hfi tensor will be studied analytically.
To obtain transparent relations it will be assumed that
the principal frame of the A-tensor is misaligned only
by a rotation about the principal Y-axis of the Q-tensor
by angle b. This angle will be the only parameter needed
to specify the relative orientation of these tensors. In
spite of this simplification, which means, XQA = (a,b,
c) = (0, b, 0), this system will allow the demonstration
of some basic albeit interesting effects of the hfi
anisotropy.

Starting with the general transformations of the
Cartesian components Tij of the hfi A-tensor to the
Q-frame, and applying the axial hfi condition by
eliminating the differences Txx � Tyy in Eqs. (15–17),
and setting sina = sinc = 0 and cosa = cosc = 1, one
arrives to the following explicit expressions for the
GM matrix.

GM ¼

GXX
M 0 GXZ

M

0 GYY
M 0

GZX
M 0 GZZ

M

0
BB@

1
CCA: ðB:1Þ

The non-zero matrix elements are for this case given as
function of only the hfi parameter T, which is related
with the traceless principal components of the hfi by
T = �T^ = Ti/2:

GðXX Þ
M ¼ M a� T

2
ð3 cos 2b� 1Þ

� �
þ m0I ; ðB:2aÞ

GðYY Þ
M ¼ Mða� T Þ þ m0I ; ðB:2bÞ

GðZZÞ
M ¼ M ½aþ T ð3cos2b� 1Þ� þ m0I ; ðB:2cÞ

GðZX Þ
M ¼ MTZX ¼ 3M

T sinð2bÞ ¼ GðXZÞ
M : ðB:2dÞ
Application now for B0 i Z, gives the following ENS fre-
quency vector.
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mI ;MðB0kZÞ � GM �
0

0

1

0
B@

1
CA ¼

GðXZÞ
M

GðYZÞ
M

GðZZÞ
M

0
B@

1
CA

¼

3M
2
T sinð2bÞ

0

M ½aþ T ð3cos2b� 1Þ� þ m0I

0
B@

1
CA: ðB:3Þ

The direction of the above vector mI;M, which is lying in
the XZ-plane, can be determined by the angle #M given
in the following relation:

tan#M ¼
mðX Þ
I ;M

mðZÞI ;M

¼ GðXZÞ
M

GðZZÞ
M

¼
3M
2
T sinð2bÞ

M ½aþ T ð3cos2b� 1Þ� þ m0I
:

ðB:4Þ

The characteristic directions of the field for a nuclear
system depend only on the relative orientations on the
A- and the Q-tensors, as it was shown in Eqs. (26)–
(28) where the method of inversion of the GM matrix
for the determination of the modified characteristic direc-

tions was described. The inversion of the GM matrix is a
rather easy task for this simple limiting case. The direc-
tion of the new characteristic direction Z 0 is shown in
the following equation:

Z 0 /
GðYY Þ

M �GðZX Þ
M

0

GðXX Þ
M �GðYY Þ

M

0
B@

1
CA) tan#Z0 ¼ Z 0

X

Z 0
Z

¼GðYY Þ
M �GðZX Þ

M

GðXX Þ
M �GðYY Þ

M

¼GðZX Þ
M

GðXX Þ
M

:

ðB:5Þ

Substituting the matrix element of GM we find the expli-
cit expression,

tan#Z0 ¼ GðZX Þ
M

GðXX Þ
M

¼
3M
2
T sinð2bÞ

M ½a� T
2
ð3 cos 2b� 1Þ� þ m0I

: ðB:6Þ

This characteristic direction lie in the XZ-plane. Two fi-
nal expressions for the magnitude of the ENS frequency
for well-defined angle b will be derived. (Notice that all
the relations of this appendix can easily adapted to the
cancellation of scalar part of the hfi by using M

a + m0I = 0.)
(a1) Coinciding A-, Q-tensors. Corresponds to b = 0

in Eq. (B.3).
For this case the GM matrix becomes diagonal since

the only off-diagonals GðXZÞ
M ¼ GðZX Þ

M vanish. This prop-
erty results to ENSF vectors mI;M coaxial to the field
when the field is parallel to any of the principal nqi axes.
Accordingly, for the field in the Z-direction the follow-
ing relation is obtained:

mI;MðB0kZÞ ¼
0

0

Mðaþ 2T Þ þ m0I

0
B@

1
CA: ðB:7Þ
On the basis of Eq. (B.7) the magnitude of the ENSF
vector in the Z-direction is given by:

jmðZÞI ;M j ¼ jMðaþ 2T Þ þ m0I j: ðB:8aÞ

Similarly, for the field along the transversal X and Y
directions the following magnitude of the ENSF is
obtained:

jmðX Þ
I ;M j ¼ jMða� T Þ þ m0I j ¼ jmðY ÞI ;M j: ðB:8bÞ

As the A-tensor is axial the field along both the transver-
sal directions to Z gives the same ENSF vector.

(a2) A more general relation for the amplitude of the
ENSF vector when the direction of the field is arbitrary
can be obtained in the limiting case of coinciding A, Q
tensors.

jmI ;M j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Mða� T Þ þ m0I �2 þ 3MT ½Mð2aþ T Þ þ 2m0I �cos2#

q
:

ðB:9Þ

This relation was tested in the plot of the Fig. 1.
(b) Let take now the more general relative A, Q-ori-

entation with b = 60�.
We obtain sin 2b = (3)1/2/2 and cos2b = �1/2,

giving:

mI;MðB0kZÞ ¼
3MT

ffiffi
3

p

2

0

M ½aþ T ð3 1
4
� 1Þ� þ m0I

0
B@

1
CA

¼

3
ffiffi
3

p
M

2
T

0

Mða� 1
4
T Þ þ m0I

0
B@

1
CA:

ðB:10Þ

The final expression for the ENSF is given in this case by:

jmI ;M j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33

24
T 2 þ ½Mða� T

22
Þ þ m0I �2

s
: ðB:11Þ
Appendix C. The limiting-frequency transition mlim

As opposed to the isotropic hfi case, each field orien-
tation gives a different shape to the function F and the
conditions for the solution mlim of the secular equation
are severely restricted. This solution corresponds to
the very last point of the set of definition of the function
F (m) and can be obtained only when the right-hand sides

of the following two expressions are equal:

F Mð~mlimÞ ¼
2ð1� g2Þ

~m2I;M
; ðC:1Þ

fMð#;uÞ ¼ �1þ
3m2z þ gðm2x � m2yÞ

m2I ;M
: ðC:2Þ



Fig. 10. Graphical representation of the hyperboloid of two sheets for the locus of the reduced ENSF vector ~mI ;M computed according Eq. (40) for
g = 0.4.
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After some simple algebra the following relation was ob-
tained for the components of the reduced ENSF vector
mI;M.

~m2Z
ð1� g2Þ �

~m2X
2ð1þ gÞ �

~m2Y
2ð1� gÞ ¼ 1: ðC:3Þ

This equation defines the locus of the tip of the mI;M vec-
tor which is a hyperboloid of two sheets circumventing
the Z axis, as the one seen in Fig. 10. The mI;M vector
is subjected of course to additional conditions, such as
finite length, depending on the case. The minimum
length of mI;M is given by mZ = K (1 � g2)1/2 which is ob-
tained when the vector mI;M is parallel to the Z axis, and
is equivalent to F (mlim) = 2.
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